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Liapunov’s [ 1 1 and Poincare” s [ 2 1 qualitative methods in the theory of 
differential equations lie at the basis of many works on the theory of 
stability of motion under large initial disturbances. 

Erugin has developed a method for the general qualitative investiga- 

tion of the trajectories in problems on the stability of nonlinear 
systems. The works [ 3 I and [ 4 1 have a direct relation to the present 

paper. In [ 5 ] there is obtained, by means of a qualitative method in- 

volving the evaluation of contour integrals, a criterion for the asymp- 
totic stability in the presence of large initial disturbances for second- 

order nonlinear systems. In the present article such a criterion is found 

for a third-order nonlinear system. Use is here made of a method which is 
related to the evaluation of contour integrals. 

1. Let us consider the nonlinear system of three equations of the 

general type 
(/Xi 
- = Xi (Xl, X2, TX) dt 

(i z I, 2, 3) (1.1) 

where Xi is a function possessing continuous second-order Partial deriva- 
tives in all the variables xl, x2 and x3. (These assumptions relative to 
the smoothness of the right-hand parts of the system can be weakened.) 
Furthermore, it is assumed that the origin of the coordinate system is 
the only state of equilibrium Xi(O, 0, 0) = 0. 

Let ri = xi(u, t), (i = 1, 2, 3)) be a one-parameter family of solu- 
tions of the system (1.1). We shall use the notation 

ax, ax 
,+ =x (-I)[‘. j. hl al ;* (i=l, 2, 3) 

j,L 
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Here the summation is carried out over all possible pairs (j, k) of 
the numbers 1, 2, 3 that satisfy the conditions: j f ,  k; j, k f~ i. The 
symbol [ i, j, kl will stand for the number of inversions in the permuta- 
tions of i, j, k 

s 

lJ, = 2 Uij‘lj (i = I, 2, :\) 

i=1 

Here I( aij (1 p3 is a constant symmetric matrix possessing positive 
characteristic numbers 

Let us consider some arbitrary surface consisting of integral curves 
of the system (1.1) and let Xi = xi(U, t) be its parametric representa- 
tion. Having taken an arbitrary closed contour r on this surface, one 
can prove with the aid of Green’s theorem that the next equation is 
valid: 

Here u is the region of the values (u, t) which corresponds to the 
part of the surface enclosed by the contour r. The double sum appearing 
in the integrand of Formula (1.2) is a quadratic form in the Ai (i = 1, 
2, 3). We shall call it the qdadratic form of the system (l.l), corre- 
sponding to the matrix 11 aij (1 13. 

we note that one can select for the matrix II aij (1 13 the unit matrix 
(1 ‘ij 11 13B where 6ii = 1, 6ij = 0 if i f  j. In this case the quadratic 
form of the system (1.1) corresponding to this matrix will have the form 

Theorem. (a) If  the solution x1 = x2 = x3 = 0 of the system (1.1) is 
asymptotically stable* relative to disturbances from some neighborhood 

* The verification of this condition can be carried out with the aid of 
known methods of Liapunov [ 1 I. 
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of the point x1 = x2 = zJ = 0; 

(b) if one can find a positive symmetric matrix [I Uij 11 13, Possessing 
positive characteristic numbers, such that the quadratic form of the 
system (1.1) corresponding to this matrix is nonpositive; 

(c) if outside of some sphere, with center at the origin of the co- 
ordinates, the right-hand sides of the system (1.1) satisfy the inequal- 
ity Xl2 + X2* + X3 2 a q. where q is a positive constant, then the solu- 
tion x1 = x2 = x3 = 0 of the system (1.1) will be asymptotically stable 
in the presence of arbitrary initial disturbances. 

Proof. By hypothesis (a) of the theorem, the solution x1 = x2 = z3 of 
the system (1.1) is asymptotically stable relative to the disturbances 
from some (perhaps quite small) neighborhood of the point x1 = x2 = x3= 0. 
We shall show that under the hypotheses of the theorem the region of 
attraction of the point x1 = x - x3 includes the entire space { zl, x2, 

91’iZu~: ~hszr:ee :;:::;“i, 
i.e. that the region of attraction does 
x 2, x3 1 . Then in consequence of the 

continuous dependence of the solution on the initial conditions, the 
boundary of the region of attraction is a closed set. Hence, by hypothesis 
(a), one can find a point (x1,,, r2,,, x3,,) lying on the boundary of the 
region of stability and nearest to the origin. Let us consider the seg- 
ment of the radius vector of the point (rl,,, x20, x3,,) which contains 
this point and is of such a small length that the integral curves are riot 
tangent to this segment (such a segment does exist because the integral 
curves passing through a point intersect its radius vector orthogonally). 

Let us further consider the surface consisting of those integral 
curves that intersect the indicated sigment. With the aid of the one- 
parameter family of solutions of the system (1. l), the equation of this 
surface can be written in the form 

li ZZ Xi(U, t) (i ZTZ I, Z-2, 3) 

For the sake of definiteness let us assume that the equation of the 
constructed segment is 

Zi = Xi(U, U) (i = 1, 2, 3) uE[O, 11 

Hereby. the smaller values of u correspond to points nearer to the 
origin of the coordinate system. 

We note that the points zi = xi(u, 0) (i = 1, 2, 3). uEtO,l I of 
the segment lie in the region of attraction of the point x1 = z2 = x3 = 0. 
In what follows we shall consider that part of the constructed surface 
which corresponds to positive values of t (for the sake of brevity we 
shall call it the integral surface). 
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Through the points of the integral curve xi = ~~(1, t) (i = 1, 2, 3) 
we shall construct orthogonal trajectories which lie in the integral 
surface. Suppose that a certain trajectory, which issues from the point 
of the integral curve %i = ~~(1, t) that corresponds to a positive value 
T of t. intersects some integral curve xi = %i(“O, t), uu E [ 0,l ] at 
the point which also corresponds to a positive value of t. Then, start- 
ing from an arbitrary point of an integral curve %i = %i(l. t) corre- 
sponding to some value of t >, T. one can construct a segment of an ortho- 
gonal trajectory lying on the integral surface. The length of this seg- 
ment can be made not less than the distance between the positive half- 
spaces of the integral curves xi = xi (1, t) and xi = %i(Uo, t). Let this 
distance be c. Because of the assumption made, 6 > 0. Let us construct a 
segment of the orthogonal trajectory, which lies on the integral surface. 
issues from the point with coordinates xi = ri(l, 7’) (i = 1, 2, 3). and 
has length E . 

Let us mark the integral curve which passes through the end of the 
constructed segment of the orthogonal trajectory. Suppose that this in- 
tegral curve iS %i = ‘i(U*, t). u* E [ 0. 11. It is not difficult to see 
that if one selects in place of T a sufficiently large value, the 
quantity u+ can be made to lie arbitrarily near 1. 

Let us consider a closed contour r on the integral surface. Let this 
contour r be formed by the following arcs: segments of the integral 
curves %i = %i(l, t), %i = %i(U*, t); the constructed segment of the 
orthogonal trajectory of length E; the segment xi = xi(u, O), u E [ u*, 114 

Let us consider the integral along the contour 

0 (Pzxa - PJa) d~l + (!&XI - /31X3) dxa + (fhxa -- !&Xl) dX3 (1.4) 
‘r 

On the basis of Formula (1.2) and condition (b), we conclude that the 
integral (1.4) is nonpositive. we can also evaluate the integral direct- 
ly. For this purpose we note that the integrand is the mixed triple pro- 
duct of vectors with the components 

Hence, along the segments of the integral curves of the system (1.1) 
the value of the integral is zero. Along the segment %i = Xi(U’ O), 
UE c Uf, 1 I, the absolute value of the integral is less than 

1/ 
G 
G ,gJ:x l] 

11 x 112 I( 2 (I, 0) - x (24’. 0) II? = iv (11’) 

Here c1 is the largest characteristic number of the positive-definite 
quadratic form 11 BII g2 in the Ai (i = 1, 2, 3), while c2 is the smallest 
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characteristic number of the positive-definite quadratic form 

3 1 
- 

S = x aijAiAj II a 112 = (a? + d + a3 
3 2 ) 

i, j=l 

Along the segment of the orthogonal trajectory the integral is less 
than E &qc), in consequence of condition (c). 

Indeed, rewriting the integral along the segment of the orthogonal 
trajectory (c) in vector form, we obtain 

Combining the obtained estimates, we come to the conclusion that the 
integral (1.4) satisfies the inequality 

(fixX).drae l/ijF2-N(u*) (1.5) 
1’ 

Next we note that by an appropriate choice of the contour r, the 
quantity N(u*) can be made arbitrarily small without changing the value 
of the curvilinear integral over the corresponding orthogonal trajectory. 
Along such a contour the integral (1.4) would have a positive value be- 
cause of the inequality (1.5). This, however, is impossible. 

The derived contradiction establishes the theorem. 

2. Under the hypotheses of the proved theorem let us evaluate the 
possible deviations along the trajectories with initial data satisfying 
the inequality 

II x II2 f r. (3.1) 

Suppose that outside the region (2.1) the quantity 11 Xl1 2* is bounded 
from below by a positive number q. Because of the continuous dependence 
of the solutions on the initial data, there exists on the sphere II x (( 2 = 
r. a point (xlo, zzO, rJo) through which there passes an integral curve 
with a maximum possible deviation 

max 11 I (1) 112 =-; R (0 <f<-J) 13.“) 

The integral curve which passes through the point (xlo, xgo, xSo) 
intersects the radius vector of this point orthogonally. Indeed, suppose 
this were not so. We mark the point of the indicated integral curve whose 
distance from the origin of the coordinates is equal to R. Obviously, the 
radius vector at this point intersects the integral curve orthogonally. 
Therefore, due to the fact that the solutions are continuous functions 
of the initial data, one can find, on the extension of the mentioned 
radius vector, a point through which passes an integral curve issuing 
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from the region (2.1). This contradicts the definition of the number R. 

Let us consider the integral surface formed by the integral curves 
that intersect a sufficiently small segment of the radius vector of the 

point (xlo, xzo, x3(,); the segment adjoins this point. As above, we 
write the equation with the aid of a one-parameter family of solutions 
of the system (1.1) in the form 

Let us establish a property of the orthogonal trajectories on such 
surfaces. In terms of the Poincare [ 2 1 coordinates u, t, the equation 
of the orthogonal trajectories on the integral surface can be written in 
the form 

Xi -= Xi (U, t (U)) (i = 1, 2, 3) 

where the function t(u) is a solution of the ordinary differential equa- 
tion 

In the region 0 ,( u < t, 0 ,( t < m, the right-hand side of Equation 
(2.3) has continuous partial derivatives [ 6 1 with respect to t and u. 
This is a consequence of the smoothness of the right-hand sides of the 
system (1.1) and of the absence of singular points distinct from the 
origin. Under these conditions the solution of Equation (2.3) with the 

initial values ue, te is either defined for all u E [ 0, 1 I, or it has 
a vertical asymptote [ 7 I for some value u E [ 0, 1 I, Hence, starting 
from an arbitrary point of the integral curve Xi = ~~(1, t) (i = 1, 2,3), 
one can construct an orthogonal trajectory which lies on the integral 
surface and either intersects the integral curve zi = ~~(0, t) (i = 1, 
2, 3) or, if extended, will enter the region (2.1). From these considera- 
tions it becomes clear that only the first possibility need be considered. 

Let us pass an orthogonal trajectory through a point of an integral 
curve at which Equation (2.2) is satisfied. This trajectory lies on the 
integral surface and is made to extend to the intersection with the 
integral curve xi = ~~(0, t). We denote the distance of the point of 
intersection from the origin of the coordinates by RI. 

Let us consider the closed contour L formed by the arcs: the con- 
structed segment of the orthogonal trajectory, the segments of the inte- 
gral curves passing through the ends of this segment, and the radius 
vector of the point (xle, x2u, z3,,) whose length we shall denote by Il. 
A direct appraisal yields 
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Taking into account the fact that the integral on the left of the in- 
equality (2.4) is. because of Formula (1.2) and condition (c). a positive 
quantity, we obtain the inequality 

When R, < r. we find that 

v z (R - rn) -- :\‘I < 0 (2.6) 

Bearing in mind that 1, < r,,, we now obtain from (2.6) the estimate 

Suppose that R1 > r,,. Let us consider a region (( ~~112 < rl such that 
the integral curves with the i;lft ial values from this region have the 
greatest possible deviation, equal to R,. Let us denote by R,, Z2 quanti- 
ties which have analogous meanings with respect to the region 11 xII~ ,< rl 
as R1 and I, have with respect to region (2.1). Here again, two cases 
can arise: R, > r. or R2 6 r,,. 

In the first case we have the inequality 

and in the second case the inequality 

-j&z (R, -- rn) - Nz 4 0 (2.9) 

If the inequality (2.9) applies, then we again obtain the estimate 
(2.7) on the basis of (2.5). Indeed, adding the inequalities (2.5) and 
(2.9). we obtain 

Noting that N, + N, < N, we? can convince ourselves of the validity of 
the inequality (2.7). Continuing such arguments, we arrive at two possi- 
bilities. The first one is this: at some finite step it is found that 
the corresponding value. say R,. does not exceed ro. In this case we have 
the following inequalities: 
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I/(lc? (R - R,) - N, f 0 

vz (R, - H2) - N:! <0 

. . . . . . . . . . . . . . 

I/G (R,-1 - I?“) - I\‘, < 0 

Adding these Inequalities, and bearing in mind that 

R, < ro, A’, + Nz + . . . + IV, < N 

we again obtain the estimate (2.7). The second possibility consists of 
the case when R, < r,, for every n. 

We shall show that the first possibility can always be realized. For 
this purpose it is sufficient to prove that the quantities Z1. I,, . . . 
can be selected in some bounded closed region not containing the origin, 
in such a ray that they are not less than some positive number. 

Let us suppose that the integral curves with initial values from the 
region I( x 11 2 ,< d do not leave the region (2.1). Such a region, obviously, 
does exist. We consider an arbitrary point of the region d 6 I( ~11~ ,< r,,. 

The Integral curve which passes through this point has a definite tangent 
at this point. Hence, it has a perfectly well-defined normal plane P. 

Because of the continuity of the right-hand sides of the system (1.1). 
one can find a number 6 such that through any point of P which lies with- 
in or on the boundary of a sphere with center at the given point and of 
radius 6 there passes an integral curve that intersects P at an angle not 
less than l/an. If 6 stands for the largest of the possible values, then 
6 is a completely determined continuous function in the region d < 11 x[12 < 

r,,. Since the function 6 takes on only positive values, Its minimum 
value will also be positive. Let us denote the minimum value of the func- 
tion 8 in the region d 2< II z II2 < r0 by 6,. It follows from this that the 
quantities 11, I,, . . . can be chosen not less than 6,. For such a choice 
of the quantities I,, 1,. . . . over a finite number of steps one obtains 

This establishes the inequality (2.7). 

Note 2.1. An analysis of the proof of the theorem and of the inequal- 
ity (2.7) will show that for the asymptotic stability of the solution 
x1 = L* = L3 = 0 of the system (1.1) with respect to initial disturbrances 
from the region (( x 112 < re, it Is sufficient that condition (b) of the 
theorem be fulfilled in the region II ~11~ < R, where R is any number 
satisfying the inequality 
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8S 

The quantities which appear in this inequality have the same meaning 
they had earlier. 

Note 2.2. A corollary of a general theorem In [ 5 1 (p. 110) gives a 
criterion for the asymptotic stability of the undisturbed motion with 
respect to arbitrary initial disturbances. This criterion specifies that 
the third-order matrix 

/ 3Xi axli 3 
/,a;,-+Tq l /I 

(2.10) 

have negative characteristic numbers bounded from above by some negative 
constant. Computations show that if the matrix (2.10) has this property, 
then the quadratic form of the system (1.1) which corresponds to the unit 
matrix (1.3) will be negative-definite. The converse is not true, as can 
be verified by means of simple examples. Thus, if one selects for the 
matrix in our theorem the unit matrix 116iil( 12, one obtains a criterion 
of the asymptotic stability for arbitrary initial disturbances, which 
imposes on the system (1.1) a somewhat weaker condition than the criterion 
in15 I. 

3. Bxa~ple [ 8 I , Let us consider the system 

a> 0, 1' (4 > Q (3.2) 

The system of the first approximation for Equations (3.1) at the point 
x1 = z* = f3 = 0 has the form 

dX1 - =.x2 - j’ (0) x,, 
dl 

dx, 
$ = 13 - Z,, 

dx3 
- = - us, 
111 

Because of the condition (3.2). the characteristic equation of this 
system has roots with negative real parts. Hence, we conclude on the 
basis of Liapunov’ s theorem [ 1, p. 128 1 that the solution z1 = x2 = x3= 0 
of the system (3.1) is asymptotically stable with respect to the initial 
disturbances from some neighborhood of the point x1 = x2 = x3 = 0. The 
quadratic form of the system (3.1) which corresponds to the matrix 

has the form 

1 0 0 
Ilaij lily= 0 1 

II 0 a 2a,2 
II 
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- [f’ (q) + al A22 -22n2y (z,) l-132 - 2a [f’ (21) + al ‘42A3 (3.3) 

Making use of condition (3.2), we find on the basis of Sylvester’s 
criterion that the quadratic form of the quantities A, and Ag is negative- 
definite. 

Furthermore, we note that the Jacobian of the system (3.1) is differ- 

ent from zero. equal to - a, for all values of XI, 3and x3. From this it 

is not difficult to deduce that outside every sphere with center at the 
origin, the quantity I( XII2 f  or the system (3.1) is bounded from below by 
some positive number. Thus, for the system (3.11, under condition (3.7). 
there are fulfilled all hypotheses of the proved theorem. Hence, the 

solution z1 = x2 = x3 = o of this system is asymptotically stable with 
respect to arbitrary initial disturbances. 

In conclusion, I express my gratitude to N.N. Krasovskii for his 
attention to and valuable advice on this work. 
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